Onto finishing the bores. A while back I acquired a Themac tool post grinder (TPG) grinder & played around with it on my previous test liners. I now have mixed feelings about TPG’s. I suppose it suites this kind of application where relatively short length work sticks out of the headstock cantilever mode. Accurate surface dimension & finish combinations can be achieved with the right technique. If the work involves hardened materials, grinding may be the only way to go, but I don’t consider CI to fall in this class. I also had hopes of using TPG for several other applications & that’s where some shortcomings & complications become apparent, especially if the project involves tailstock support. The TPG assembly just wants to occupy the same real estate as TS assembly which really is difficult to work around. I also had a tough time finding suitable wheels, meaning the right diameter & grit & composition combination. I ended up buying a surface grinder wheel from KBC & had a water jet cutter make me a bunch of wheel blanks. I was a bit apprehensive about them blowing up but so far so good. Dumore is another popular name. I can’t speak for their wheel arbors but the Themac has an oddball taper that doesn’t match any common taper, seems to be unique to them. Ultimately, I figured it out, but suffice to say making your own arbors is more work.
Most of the time you will see a TPG lathe setup where people pre-align the lathe compound at a shallow angle & finely increment cross travel depth that way. The magic trig number for convenience is 5.739 degrees compound angle (off of spindle axis) which yields the relationship of 0.001” increment on compound dial equates to 0.0001” of cross bed travel, times 2 equals 0.0002” in bore increment. Just remember the same rules of removing backlash apply. And this is not exact because unlike a cutting tool, the wheel is slowly eroding in diameter as grinding proceeds. So you have to measure & re-calibrate more so than other lathe operations.
My compound leadscrew is in pretty good shape. But when I secure the compound dovetail between each pass, the clamping action itself can drift the actual position a bit. I’ve made some improvements to the lock, but it’s still there. So, I don’t completely trust this setup on my machine although I do like the fine incremental feed aspect. Alternatively, I made a fixture to hold a tenth’s reading dial gauge to bear against the end of the cross slide itself which directly measures Y infeed displacement that way. This removes both backlash & table lock issues simultaneously. A sensitive dial gage also acts as a sober indicator of machine vibration which is flowing through to the grinding wheel. The needle fluctuates on either side of the true reading. Ideally, deflection is low & somewhat dependent on where the indicator is mounted & how things are tightened down. I think the TPG is probably approaching the limits of my lathe rigidity & spindle bearing condition. If you don’t have dovetail locks, my opinion is that TPG might be the wrong weapon of choice because once the motor winds up, the sliding surfaces can become ‘buzzy’ & prone to free floating, even with a good quality TPG. A suitable DRO can measure displacement independent of dials so long as you have the right resolution. But consider even typical 0.0005” step increment on DRO display represents 0.001” of bore gone. That’s what made me a believer in a mounted analog indicator. So, after some trials I kind of considered the TPG as a ‘truing’ tool, not a finished bore tool. At least on my lathe & limited experience. That leaves the last thou or more for lapping but TPG is still a time saver. Whether this warrants the expense & setup of TPG is probably another discussion. So, who knows, it may get traded for a TIG welder one day which costs about as much & would see a lot more use in my shop, but that’s another story. What I REALLY need is a Sunnen hone LOL.
Back to liner grinding. I plugged off the back end of my collet chuck so grinding debris would not migrate in behind. I used a single wrap of tape on the liner OD for protection & gripped it in 5C collet chuck.
The wheel was dressed in-situ with a homebrew diamond tool holder. Cover the machine & use a vacuum for this operation please. Then it was a matter of selecting a low spindle RPM, power feed the TPG on low traverse setting & start opening the bore in small ~0.0005” bore increments. It is a somewhat satisfying experience to see partial patches being removed under grinding, meaning non circular sections features you thought were quite true by a boring bar alone. The liner never got warm because of low DOC & more time measuring & futzing. I tried a fluid but t didn seem to be adding any value, the wheel looked clean at these removal rates. The bore finish was ‘ok’ not stunning. The geometry & roughness seemed acceptable but I think it exhibited skip or maybe secondary vibration. I’ve been told my grit selection was too fine, that actually coarser would be better. Grinding is a science in itself. But they popped off pretty quickly. I have been making 6 cylinders, 1 guinea pig & hopefully 5 keepers.