Next up is the intake manifold assembly. Hopefully this topic won’t put many of you to sleep. After making the components according to plans, some issues came to light and & I ended up adapting things a bit differently. Maybe some of the modifications & reasons behind them will also be of interest to those contemplating a similar build.
The manifold part is bolted to the rear of the crankcase using 10x M3 screws. The forward-facing section is basically a lip machined to fit snugly inside the crankcase housing ID. It also incorporates an O-ring for seal which I noticed was not featured on the O9 radial. The middle flange section has 5x M4 threaded holes for motor mount standoffs to connect the engine to the firewall. The rear section is the manifold where the intake tubes tie into & carb is mounted into.
On each intake stroke, fuel mist is drawn through the carb, into the manifold’s center hole, into the crankcase chamber (red dots). Because oil is premixed with the methanol fuel, the intake mist lubricates the components within the crankcase before carrying on to the heads. This is typical RC engine style lubrication. Fuel mist exits rearward from the crankcase, out through one of the 5 manifold holes (orange dots) through its respective intake tube into the head’s intake port.
If you recall earlier in the build description, the plans call for the nose case chamber to be partially filled with an oil bath to splash lubricate the front-end components, the cam plates, cam bearings, lifters & planetary gear train. In other words, a separate lubrication system to the rear crankcase mist flow. After much indecision & hand wringing on this issue, I decided not go this route for now. Rather, I opened up the front gear plate with an array of apertures (holes) working around the existing idler gear & bearing layout. So, I’m depending on the same incoming mist to carry on further forward into the nose case & also lubricate the nose case jewelry.
From what I can tell, this mode is similar to other methanol glow radials such as Jung designs, commercial engines like OS & Saito, possibly others. I do feel there is a bit of risk here because the crankshaft counterweight & master/link rod assembly blank out a healthy percentage of open flow area apertures & the O5 seems a bit more crowded compared to these engines. If my decision turns out to be a lubrication fail, hopefully damage will be something short of catastrophic & I will have to revert to a nose case oil bath.