Hi Bob, I'm sorry, I wasn't taking offence at what you are doing. I appreciate you have (previously) stated that you are basically an Electronics Engineer, but enjoying making models (exemplary work I might add! - I am learning from you as much as anything!). Therefore you are asking for comment, feedback and advice about what you are doing. As such I am offering my "mechanical Engineering" expertise - for what it is worth.(Only 50 years in this...). But I am not the expert on everything, although I have worked with more than a few and learned some of the questions and pitfalls of Engineering life. I apologise as seeming to be a "tactless old what's-it sometimes", but (Based on a lifetime of "I told you so" experiences) sometimes over-react to many people who just say "I think it is OK" without offering their reasoning. Often they are correct, but just as often they didn't look at the problem I (or others) have queried, and then make errors of judgment as a result. I am just trying to be sure that wherever you got your design from, you are sure that the bolt design is adequate for your application. In am not a metallurgist. But - to put my message simply:
Con-rod Big-end bolts are usually designed by the original designer to be strong enough, and stressed to be fatigue resistant for the application to have some long durability.
If you use a different material, size or whatever, then it only seems reasonable (to me, anyway). that some simple correlation is conducted to see if the proposed alternative is adequate to the original design.
Whether or not you are the original designer, you have made the rods for bolts with 13% more CSA for tensile stress - which in itself reduces the stress accordingly, but also have selected a bolt with what I think is a lower strength than what I GUESS the original designer may have chosen? So if the resulting stress on the bolt is relatively higher (in relevant terms) compared to the strength of the material, then you are at risk of reducing the lifetime before failure (due to fatigue).
N.B. Off the web: 18-8 stainless is typically 0.2% proof stress >205 MPa. Here's a table of strength of parts (not as complete as to include your parts):
but it shows that "Stainless" is only about 1/4 of the strength of "Alloy" steel screws. As the specification you have is so vague (#5-40 SHCS), I would have certainly gone for the "best available" material, rather something unknown, for this application.
It is "not hard" to do some checks: (I, or others, can do them for you or check what you have done if you wish). All one needs is the actual details of the original con-rod big-end bolt design versus your selected alternative. The internet has all the "text book stuff" to make this relatively easy to do.
I just found this...
Connecting Rod Bolts Calculation with VDI 2230 standards (excelcalcs.com)
But I haven't downloaded it yet (pointless unless I have all the data to input anyway!).
Just for some "Odd" background: having worked on engines since the 1960s, through to the 1990s, I have only ever experienced the "nuisance" of manufacturers' instructions to change the con-rod bolts for NEW parts every time the big-end is assembled. (The exception being any engine that had not run, and had not been fully torqued). There is a table in the link that shows the various methods ("Qualities") of tightening, and the "factor" to use in the calculation spreadsheet. This may give you some appreciation of how highly critical the industry consider the design and installation of the big-end bolt.
Recent experience (within this website) has had 2 threads discussing strength of crankshafts (because of failures at VERY early life), so I am advising "what I know" so maybe you will not experience a running failure within minutes of first start-up - or ever.
Sorry, if my English is a bit blunt: I reiterate that "good Engineering" is necessary on some components, and I am trying to advise you to "check, check, check". It will help avert any failure.
My best wishes for a successful model, I do think you are presenting some excellent work.
K2