Hi Brian, from the CAD picture I thought it looked like the hook would become un-hooked on the valve-closure stroke at speed...?
I understand the "vacuum" engine principle, or "atmospheric engine" as it was called when Newcomen developed his first "Steam" engine.
I have wondered about the flame inside the cylinder? Does the flame - especially when comprising yellow parts = burning gas heated particles. - heat the gas slightly and increase the pressure in the cylinder before it cools and the pressure drops? - Would earlier valve closing timing be better on the intake stroke, so there is a moment for any increasing pressure from the remaining combustion to drive the piston to BDC, before the "vacuum" is developed and sucks the piston to TDC? - Seems I should make an engine with variable valve timing to "suck-it-and-see"?
Did you know that Hero (the Egyptian fellow a few Millenia ago) used the "Vacuum" developed in a condensing steam chamber to pump water to open and close the Temple doors, at a commend from the Pharaoh, so the Pharaoh appeared to operate the doors by "god's will"? - Credited with the first Steam engine, and first Atmospheric engine, but also hydraulics? The steam pressure was used to fill a chamber, at some height and connected to the boiler and a reservoir. When the condensing steam developed the vacuum to draw-in water from the reservoir, it was used as a weight to open the doors via a pulley, rope and lever system. The released weight of water then permitted the doors to close as falling a counterweight then returned the system to rest. - I think?
The Hero turbine was the first rotary steam engine (turbine) also, using reaction jets. It took a couple of thousand years before Newton developed the reason that reaction jets work, by maintaining the total momentum of the system. (M1v1 + m2V2 = 0, M1v1 being the "Hero turbine" and m2V2 being the steam expelled.).
Did you know that the early industrial "flame eaters" were also very large early "fire-engines" by consuming the flames and hot smoke from coke furnaces (which made coke for smelting in steel works) and drove large turbine centrifugal fan) air blowers that were used to blow air through the molten iron to de-carbonise it to make steel? By using these engines, they eliminated the steam boilers and steam engines previously used. But they suffered very high wear rates from the smoke and ash and corrosive acids in the exhaust they were breathing.
History. a good place to begin....
K2