Spur gears are pretty easy to understand in general.
I have seen old wood gears on Dutch windmills, and they ofter are just pegs mounted in a flat disk.
The fit on the old wood gears was not critical, and so there was sufficient clearance for the gear teeth to clear each other as the gears rotated.
The Archimedes screw was used in ancient times to pump water, and while watching a bare screw move, it visually appears that the helical parts of the screw are moving linearly down the length of the screw.
Of course the helical spiral of a screw is fixed to the shaft, but the effect is like a wood screw, where if you turn the shaft, the screw progresses into the material.
The rate at which a screw progresses into the material is related to the angle of the helix.
Quick screws (not sure of the exact term for them) can bottom out in as fast as a half turn or less, and they have a very high angle on the helix.
Fine threaded machine screws progress very slowly as you turn them.
For
spur gears, in order to increase or decrease speeds, one can use a smaller gear to drive a larger gear, with the speed ratio determined by the tooth ratio between the large and small gear. The trick is that the teeth have to be the same size and general shape on both the smaller gear and the larger gear.
Crossed helical gears and
worm gears seem very similar, and seem to operate about the same way.
I think
worm gears are generally designed to provide high torque to the shaft which has the larger gear, and they are not designed to run backwards, ie; the large gear cannot power the small gear.
Crossed helical gears do not adhere to the same rules as spur gears, ie; for varying speed ratios (such as 2:1), the diameter of the two helical gears can be the same, as long as the angle on the teeth of the two gears is different.
You can use helical gears of different diameters to get a speed ratio, but you can also use helical gears of the same diameter to get different speed ratios.
All of the commercial helical gears I have seen have a fixed angle, such as 45 degrees, and to get varying shaft speeds, you need gears of different diameters.
I was baffled when I saw the first crossed helical gears on a side-shaft IC engine that were the same diameter, but running at a 2:1 speed ratio.
"How does that work?" I remember saying.
Orientation of the gears and gear angles for helical and maybe some other gear types can be critical depending on whether the shafts will be parallel or at an angle such as 90 degrees.
It surprises me that when gear teeth are spiraled around a shaft, they will mesh with each other, especially with crossed helical gears.
The reason crossed helical gear teeth mesh I think is because the perpendicular section of the teeth on both gears is identical, even though the angle of the spiral differs.
Crossed helical gears I think are not used in high-power applications, because the tooth contact is a point (check me on that).
A spur gear tooth contact area would be a line.
I think helical gears used on parallel shafts will transmit large amounts of power very smoothly.
So as JasonB says, when we make crossed helical gears, the only variable that is not fixed is the angles of the teeth on the two respective gears.
If we fix the tooth angle to 45 degrees, then the only way to have a differential shaft speed is to have gears of different diameters.
If we use Maury's Ha =63 deg 20 min, and for the gear, the Ha =26deg 40 min, with crossed helical gears of the same diameter, those angles are the only thing that can vary (as Jason says).
The crossed helical gear speed ratio is always determined by the tooth count, but if you don't get the angles correct, then I guess the teeth don't mesh as they rotate at their 2:1 ratio.
The gear with the lower tooth angle goes on the crankshaft, and it rotates twice for each rotation of the gear with the higher angle.
Both gears have to have the spiral going the same way (either both clockwise or both counterclockwise) when looking at a section of the gears.
If you think in terms of wood screws, the gear with the lower tooth angle will progress into a piece of wood at half the speed as the gear with the higher angle.
The 2:1 ratio of the Frisco Standard gears is due to the 2:1 tooth ratio, but also seems to be due to the two different tooth angles, since it takes both factors to produce the 2:1 speed ratio.
If the speed ratio of crossed helical gears was only due to the 2:1 tooth ratio, then you could have a 45 degree tooth angle on both gears.
Edit:
I think the reason crossed helical gears mesh, when the same situation would not work on two of the same diameter spur gears is that you sacrifice a large tooth contact area, and have only a point contact with crossed helical gears.
That is how crossed helical gears can apparently magically mesh when conventional wisdom would seem to indicate that they should not.
.