The gear tower is a fairly complex assembly of gears designed to connect the overhead cams to the crankshaft. The tower also includes a 'magneto block' containing one of two sets of bevel gears that will eventually drive the magneto. The water and oil pumps will be driven from a separate 60 tooth take-off gear located below the crankshaft. The Offy's gears span four separate subassemblies not including the split crankcase, and their exact locations will be affected by the use of any gaskets or sealers between these assemblies. Because of the large number of high rpm gears and their loads, accurate tooth profiles and spacings will be important for their longevity.
Before finishing the tower's modeling, I thought it best to have the actual gears in my hands so their running spacings could be verified and adjustments made to the model if necessary. I've twice before run into issues with new gear cutters producing poor tooth profiles although these were probably a result of mislabeling. Except for the scavenger oil pump, the Offy gears are all 48 DP. I have several known good 48 DP cutters, but unfortunately a new one had to be purchased for this build.
Several of the gears are identical, and so it made sense to slice multiple copies of the same gear from long pre-machined blanks. Ron recommends making the gears from casehardened mild steel as was done in the full-size engine. However, I have no experience with casehardening and was concerned about using the gears as learning tools. With no way to control the process or to measure the final result, I was worried about over-hardening and embrittling the tiny gear teeth especially those on the 60 tooth gears. Instead, I machined most of the gears from 1144 which has a Rockwell C hardness of around 25. The hardness of mild steel gears (even those purchased from Boston Gear) are equivalent to only 1 or 2 if they were to be compared on the same scale. Stressproof's tensile and yield strengths (important specs even under a hard skin) are twice those of mild steel.
The stresses that the crankshaft sleeve gear will see are a bigger concern to me especially since physical limitations require it to be attached to the crankshaft using only Loctite. I machined this gear from O-1 drill rod which, after a 1475F quench, was tempered at 375F. Its final hardness and tensile strength should be roughly twice that of Stressptoof, leaving its Loctite bond to the crankshaft as its weakest link
As often seen on commercial gears, I typically chamfer the corners of o.d.'s of my shop-made gears. I left the Offy's gears, though, with full width tooth contact for a bit more durability. The widths of the gears were finally finished on a surface grinder.
The oil pump gear stock was machined from 360 brass. The pressure pump gears are also 48 DP, but the scavenger gears are 32 DP. The individual gears will be parted off from their blanks later when I'm more familiar with the lubrication system. A set of shafts and spacers finished up the nuisance parts associated with the gears.
The nose of the test rod that I've been using as a dummy crankshaft was machined to temporarily accept the hardened sleeve gear so the fits of the two 60 tooth driven gears could be verified. The meshes of these two gears with the crankshaft gear span the split between the two crankcase halves, and from previous measurements I knew the distances between the gear centers were on the order of a thousandth within theoretical. The three gears turning freely with minimum backlash was something of a minor milestone for the project.
A fixture for testing the 40 tooth gears was also machined to verify the meshes and spacing between them. Its design was small subset of the gear tower and was also used to tweak the end mill parameters for the bearing fits. These three gears also turned freely with minimum backlash at their theoretical spacings.
Finally, a bearing removal tool was ground from a long hardened hex wrench. Counterbores will be added behind the bearings in the gear tower so the bearings can be removed as necessary using this tool. These counterbores and the tool were also part of the testing done in the above fixture. - Terry