There may be an issue with the carburetor and/or intake manifold that's creating the need for a much higher starting speed than I had expected. The engine won't start until the drill starter approaches some 1000 rpm. Before revisiting the carburetion, though, I want to raise the speed of the internal starter.
The motor currently inside the Knucklehead is a 165 rpm planetary gear motor from Servo City:
https://www.servocity.com/165-rpm-hd-premium-planetary-gear-motor
My original testing (beginning with post #128):
https://www.homemodelenginemachinist.com/threads/another-knucklehead-build.27584/page-7
was done using the 437 rpm version of this motor using my Howell V-twin as a makeshift load. This motor was capable of spinning the Howell at 400 rpm and was used to come up with a ballpark spec for the Knucklehead's starter. During the design of a chain drive to connect the motor to the engine's crankshaft, I discovered I'd have to live with a 20% step up between the gear motor's output shaft and the engine's crankshaft meaning that the torque delivered to the crankshaft would be down by 20%. I initially installed the 165 rpm version of this motor in the Knucklehead because of its highest available torque along with a potential 200 rpm cranking speed which at the time was my guess at a usable minimum.
The motor current required for a particular torque can be found from the motors' torque/current curves which are sketched in the first photo. The slopes of these curves, provided by the manufacturer, have been adjusted for the chain drive, and so they reflect the 20% torque drop at the crankshaft. The maximum torque available from any of the motors is limited by their 20 amp stall current.
A starter's cranking speed in a V-twin application is difficult to calculate because of its wildly varying load. Between compression strokes, the motor will attempt to run at its no load speed. A V-twin starter will spend roughly 60% of its time effectively unloaded. When loaded by a cylinder in its compression stroke, the rpm will attempt to fall commensurate with the torque it must deliver. However, inertia, which will be dominated by the flywheel's angular momentum, will attempt to smooth out any changes.
The first scope photo contains the 165 rpm gear motor's current waveform generated during the first second immediately after the starter switch was pressed. There was an initial, but brief, inrush current before the motor began spinning and creating a counter emf. The starter ran into its first compression load while the cranking period was still long compared with the cylinders' leak-down times. By the time it encountered the second one, its speed had increased, and the current peaks were beginning to stabilize at some 11 amps corresponding to torque peaks of 320 oz-in.
The engine's irregular power strokes can also be seen in the waveform. It shows the rear cylinder's power stroke occurring some 250 ms after that of the front cylinder. Inside the 560 ms 4-stroke cycle this corresponds to 321/411 degree firing intervals (compared with the 315/405 degree theoretical values). The small discrepancies are likely caused by the system's inertia.
The cranking speed is slow enough to discern the bifurcated loads presented by the two cylinders' closely spaced TDC's. The highest of the two peaks is created by the load presented by the cylinder in its power stroke whose piston is approaching TDC with both valves are closed. Just 45 degrees earlier, the piston in the other cylinder is also approaching TDC but in preparation for its intake stroke. The load created by its piston moving upward with its intake valve closed and its exhaust valve closing is also significant until the intake valve opens near TDC.
The second scope photo contains a snapshot of the same waveform several seconds later when it has had time to stabilize. The 560 ms 4-stroke cycle includes two crankshaft revolutions and corresponds to a 214 rpm cranking speed which, mysteriously, is 10% higher than should be possible.
If the torque curves are examined with these measurements in mind, it's obvious that the engine's 320 oz-in peak torque requirement should be easily satisfied by the 313 rpm version of the gear motor, while potentially doubling the cranking speed. The 437 rpm motor, on the other hand, might provide even more cranking speed, but it will come up about 65 oz-in shy of producing the required torque. Some of this shortfall may be compensated by the flywheel's additional angular momentum provided by the higher cranking speed. Therefore, I decided to replace the 165 rpm gear motor with the 437 rpm version.
The third scope photo contains the 437 rpm motor's current waveform during the first second after the starter button was pressed. The 20 amp inrush current along with a short stabilization period is still visible, but the bifurcated peaks have disappeared. This motor is spinning fast enough for the flywheel's angular momentum to carry it through the relatively small load variations created by the cylinder approaching its intake stroke. In steady state, the current peaks are just kissing their 20 amp maximums thanks to the flywheel covering the torque shortfall.
The fourth photo shows the current waveform after the cranking has had plenty of time to stabilize. The peak currents created by the rear cylinder in its power stroke are barely reaching 20 amps and those created by the front cylinder are a bit less which probably indicates some minor compression difference between the two cylinders. The 320 ms 4-stroke period corresponds to a 375 rpm cranking speed which is 30% lower than its 524 rpm no-load value.
Out of curiosity, I also temporarily installed the 315 rpm motor for testing. The peak currents were 17 amps as expected, but the cranking speed was only 240 rpm which was 40% lower than its 375 no-load value. The lower cranking speed also uncovered a portion of the bifurcated loads.
In the end, I re-installed the 437 rpm motor which seems most optimum of the three I had available to test. Actual engine starting tests using this motor showed the drill starter was still required to cold start the engine. The internal starter, though, was now able to restart the engine after it had been run for a while. The next step will be to revisit the carburetion. - Terry