Plans for the 1902 Meriam Abbot engine by Doug Kelley were published in the Nov/Dec 2022 and Jan/Feb 2023 issues of "Home Shop Machinist"
I had built the Two Cylinder Nash, also by Doug Kelley and had liked his designs.
This engine uses very similar construction methods, although there are things I would have done differently, so I did.
The original was made mostly of brass, which I would have had to acquire, but I had steel in the right sizes for most parts, so it is mainly made of steel. My crankcase is silver brazed, but first bolted together with 2-56 socket head cap screws. The crankcase sides and bottom are 3/16" plate, the sides are spec'd as .030", but I made them .060" for a little more stiffness. I tried the silver solder recommended in the article (Harris 4% silver) and found I'd rather use the high temperature braze (Harris 56% silver). I did use the silver solder for some small parts, or where different temperatures were needed for a second part to be added.
I used the rotary table to cut out the crankcase sides. Two roughly sized blanks were riveted together, and the crankshaft center marked. The rotary table was set up so one slot was parallel to the x axis with rotation at 0 degrees.
I had made a plate and smaller finger clamps along the way which have helped a lot in small work holding. The plate was added to the rotary table with the table centered under the quill, then the two blanks added with the crankshaft center at the table's center. This way, I could cut the sides parallel, top and bottom parallel, cut the curves where the sides angle toward the top in one set up. The crankshaft center was the 0,0 point, and all the other dimensions came from there.
I also made the larger bearing flange from steel, and in one piece instead of gluing the webs to the flange. A blank was turned with the cone to make the ribs from. This was screwed to a plate using the mounting holes, then the center of the flange was centered on the rotary table.
Cuts for this part were relative to the center also, and two of the mount holes were parallel to the x axis. Start points were: y axis away half the rib thickness plus half the cutter diameter, x axis left half the center hub diameter plus half the cutter diameter, then make the cut moving further left and down to the height of the edge. Rotate 60 degrees and repeat x6. I actually started bigger, and finished at these dimensions, but that is how I planned the cuts.
Next, Y axis toward me one half the rib thickness plus one half the cutter diameter and repeat all the above steps. I used a ball end mill for the cuts close to the ribs and hub, so it looked like a fillet, and flattened the areas between with a regular end mill. It looks rougher in the pictures than it actually was, because bead blasting made it quite smooth.
I need to fix some more pictures.
Thanks for looking
Doug
I had built the Two Cylinder Nash, also by Doug Kelley and had liked his designs.
This engine uses very similar construction methods, although there are things I would have done differently, so I did.
The original was made mostly of brass, which I would have had to acquire, but I had steel in the right sizes for most parts, so it is mainly made of steel. My crankcase is silver brazed, but first bolted together with 2-56 socket head cap screws. The crankcase sides and bottom are 3/16" plate, the sides are spec'd as .030", but I made them .060" for a little more stiffness. I tried the silver solder recommended in the article (Harris 4% silver) and found I'd rather use the high temperature braze (Harris 56% silver). I did use the silver solder for some small parts, or where different temperatures were needed for a second part to be added.
I used the rotary table to cut out the crankcase sides. Two roughly sized blanks were riveted together, and the crankshaft center marked. The rotary table was set up so one slot was parallel to the x axis with rotation at 0 degrees.
I had made a plate and smaller finger clamps along the way which have helped a lot in small work holding. The plate was added to the rotary table with the table centered under the quill, then the two blanks added with the crankshaft center at the table's center. This way, I could cut the sides parallel, top and bottom parallel, cut the curves where the sides angle toward the top in one set up. The crankshaft center was the 0,0 point, and all the other dimensions came from there.
I also made the larger bearing flange from steel, and in one piece instead of gluing the webs to the flange. A blank was turned with the cone to make the ribs from. This was screwed to a plate using the mounting holes, then the center of the flange was centered on the rotary table.
Cuts for this part were relative to the center also, and two of the mount holes were parallel to the x axis. Start points were: y axis away half the rib thickness plus half the cutter diameter, x axis left half the center hub diameter plus half the cutter diameter, then make the cut moving further left and down to the height of the edge. Rotate 60 degrees and repeat x6. I actually started bigger, and finished at these dimensions, but that is how I planned the cuts.
Next, Y axis toward me one half the rib thickness plus one half the cutter diameter and repeat all the above steps. I used a ball end mill for the cuts close to the ribs and hub, so it looked like a fillet, and flattened the areas between with a regular end mill. It looks rougher in the pictures than it actually was, because bead blasting made it quite smooth.
I need to fix some more pictures.
Thanks for looking
Doug