Well I'm slowly finding time to make some model engine ignitions and for my race car. I am developing several different types of ignitions I am hoping to sell here, my web page, and on other sites. Once I have the designs ironed out I'll get a vendor membership for here and sell them. But in the mean time I would like some feedback on the designs. Can't promise to incorporate them but I'll try. So follow along and see what happens, R&D research and destruction.
I'll be offering the ignitions in 3 versions, just the board, full kit, and preassembled versions. No I don't have a final price yet but kits should range from $30 to less than $100 dollars depending on features and model. The versions range from a simple buzz coil to fully programmable sequential ignition timing. I have learned from manufacturing other equipment, mostly industrial stuff like hardware and software, that it is hard to please everyone. But that does not mean that I can't offer some choices. I spent most of the winter designing these boards to allow one to choose to use certain parts by leaving them out and just bypassing the part, I'll explain more later. I would like to say that I may appear to be new here but I'm not. I'm also not new to the internal combustion process (deflagration). Yes I'm also fully aware that there are others offering ignitions and there are lots of DIY'ers out there but this is just my offering. I am also a very firm believer in the "K.I.S.S. System". I tried to make the boards user friendly for soldering. The way I see it, if I find it easy to solder them then others should be ok, if not then I'll redesign the boards. The boards can either use my custom designed coils or you can use your own, just run wires to your coil.
The boards, a work in progress:
I used new software to design these boards "Dip Trace" it is the best I have used so far for the price and I have used software from Win-Draft to OrCAD, so $50 to $5,000 or more.
The first one below is my Buzz coil "IDI-ADJ-BZ-HV" or Inductive Discharge Ignition, Adjustable, Buzz, High Voltage". I did research about Buzz Box ignitions and found that there was timed and untimed boxes. I can't see why anyone would want to use untimed today. The "IDI-CD4047B" or Inductive Discharge Ignition using a CD4047B which is a one-shot multi-vibrator that operates from 3.5v to 18v. Both the IDI-ADJ-BZ-HV and the IDI-CD4047B use the CD4047B set for non retriggerable so that it can't refire until the current trigger pulse is done. This also means that if the engine is stalled at a trigger point the coil current shuts off after the pulse. The CD4047B needs to see a rising or falling pulse in for a trigger. The ignition coils I had made were based on an inductive coil that I had them modify so it can work in IDI or CDI. I don't like the term TCI because maybe I won't use a transistor.
Features for Buzz:
-Operates from 4.7v to 18v, higher the voltage the stronger the spark. But normally set for 5v using a reg for above 6v in.
-Auto Advance with RPM, if you want. Selectable (fixed or auto) or leave out the switch and hard wire a jumper.
-Use either points, inductive, or Hall-Effect trigger (min 3.5v trigger source).
-Max auto advance is controlled by the distance between the Hall-Effect to magnet.
-Use trailing edge with points, inductive, or Hall-Effect to get auto advance.
-Use my coil or yours.
-Adjustable number of sparks and at what frequency, this is so you can use your own coil, each coil is different. The dwell time R3 is the window for the sparks, frequency R7 is the actual number of sparks.
-Self resetting fuses.
-3" (76.26mm) long x 2" (50.49mm) wide.
Buzz
Features for IDI CD4047B:
-Same as the buzz coil board but puts out just one spark. Less parts also.
-Adjustable dwell time R3.
-2.75" (69.79mm) long x 1.75" (44.38mm) wide
IDI CD4047B
Features for CDI Sparky-1:
I originally made this board to work with R/C plane engines and it works very well. With 11.7 volts in it will make sparks up to 37,200 RPM on a single cylinder operation, 21,000 RPM at 5v operation. Average HV is 27,000 or 18,000 at 5v and 32,000 at 11.7v.
-Capacitor Discharge Ignition.
-As low as 400ma current consumption, can go lower but the spark is weak.
-Uses an external trigger and power source. I'll probably change the external regulated power source to internal.
-Needs a 5v external trigger in. Doesn't matter what type but must be at least 5 volts.
-Voltage in is 5-12 volts. I have ran it with 4.5 volts.
-Uses a hic-up circuit so that once the capacitor is charged it turns the charging circuit off and on as needed to keep the capacitor charged and reduce power consumption.
-Charing voltage is 1,000v at 1,000 RPM (single) and 100v at max RPM, max RPM depends on voltage supply.
-Has a separate Kill Switch in line.
-Sparky-2 and 3 in development. Less parts and better performance I hope.
-3" (76.43mm) long x 2" (50.73mm) wide.
Vid Prototype development 1
Vid Prototype development 2
Sparky-1
Features for Universal Trigger Board CD4047B:
I designed the Universal Trigger Board to put out a signal from just about anything. I also designed it work with small engines to automotive use.
-It is a signal conditioner. Signal in square wave signal out of 5-15 volts.
-Will work with points, inductive, or Hall-Effect trigger, has built in weak single boost op-amp.
-Use the Hall setting for points and Hall-Effect.
-Use HEI setting for inductive coil weak signal setups.
-Use with Sparky-1 board.
-Fixed or Auto-Advance
-2.75" (69.85mm) long x 1.75"(44.45mm) wide.
Universal Trigger Board CD4047B
Well these are my simplest boards but, I could have made something as simple as the TIM-6 board but that to me is too simple. But wait, you can use either the Buzz board or the IDI-CD4047B board as simple as the TIM-6 board it's just a matter of choosing what you want and bypassing everything else. For example: if your using a 6v battery you can jumper F1, jumper the input pin of the voltage regulator to the output pin, if you want just fixed timing then leave out the switch and jumper pin 3 or 4 of the switch to pin 2 of the switch, for auto-advance same thing but jumper to pin 5 instead of 2, and so on. These board designs are not locked and I only ordered 5 of each as prototypes for R&D purposes. If someone want's to try one contact me, just pay me for the board and shipping, I'll probably sell 3 of each and any extra parts I have like coils and such. Oh the boards already have a spot for the pull-up resistor for the Hall-Effect so it should be just a matter of putting a 1.5k ohm resistor in and connecting a Hall. Oh the regulator is mostly for the Hall-Effect depending on which one you choose.
How the auto-advance works:
The auto-advance works by using the trailing edge (negative going) of the input signal. It doesn't matter if you are using either points, inductive, or Hall-Effect trigger, as RPM goes up the trailing edge will move closer to the leading edge and so timing will advance from it's initial position. For points you put a 10k ohm resistor in for R1, put a 10k ohm resistor between SIG-IN and S-, then put the points across S+ and SIG-IN. This will give a high when the points close and a negative going low for the auto-advance. You can't control the max advance with points (yet) but you can with a Hall or inductive pickup. When you move the Hall-Effect or inductive pickup away from the magnet the whole pulse width will shrink. So you just reset the initial timing and the auto-advance will now advance less.
Current research:
Currently I'm working on a programmable ignition timing interface. Using an Arduino Nano the interface will allow me to use either points, inductive (HEI), or Hall-Effect trigger working off the crank or distributor signal to program 200 points at 50 RPM increments. The PITI is to replace the mechanical advance on my race car, I don't use a vacuum advance, to much power for that. The interface goes between let's say the dizzy and the ignition box. In my case a Crane High 7 ignition box. The interface is similar to the UT board but, programmable with all the bells and whistles I want and need for drag racing. It's also scalable up or down. Eventually it will do sequential ignition firing from 2 to 20 cylinders or more if I want but, that's getting ahead of myself and I have my racecar to get ready.
Anyway let me know what you people think or if you have any questions just ask, I'll get back ASAIC.
Ray
I'll be offering the ignitions in 3 versions, just the board, full kit, and preassembled versions. No I don't have a final price yet but kits should range from $30 to less than $100 dollars depending on features and model. The versions range from a simple buzz coil to fully programmable sequential ignition timing. I have learned from manufacturing other equipment, mostly industrial stuff like hardware and software, that it is hard to please everyone. But that does not mean that I can't offer some choices. I spent most of the winter designing these boards to allow one to choose to use certain parts by leaving them out and just bypassing the part, I'll explain more later. I would like to say that I may appear to be new here but I'm not. I'm also not new to the internal combustion process (deflagration). Yes I'm also fully aware that there are others offering ignitions and there are lots of DIY'ers out there but this is just my offering. I am also a very firm believer in the "K.I.S.S. System". I tried to make the boards user friendly for soldering. The way I see it, if I find it easy to solder them then others should be ok, if not then I'll redesign the boards. The boards can either use my custom designed coils or you can use your own, just run wires to your coil.
The boards, a work in progress:
I used new software to design these boards "Dip Trace" it is the best I have used so far for the price and I have used software from Win-Draft to OrCAD, so $50 to $5,000 or more.
The first one below is my Buzz coil "IDI-ADJ-BZ-HV" or Inductive Discharge Ignition, Adjustable, Buzz, High Voltage". I did research about Buzz Box ignitions and found that there was timed and untimed boxes. I can't see why anyone would want to use untimed today. The "IDI-CD4047B" or Inductive Discharge Ignition using a CD4047B which is a one-shot multi-vibrator that operates from 3.5v to 18v. Both the IDI-ADJ-BZ-HV and the IDI-CD4047B use the CD4047B set for non retriggerable so that it can't refire until the current trigger pulse is done. This also means that if the engine is stalled at a trigger point the coil current shuts off after the pulse. The CD4047B needs to see a rising or falling pulse in for a trigger. The ignition coils I had made were based on an inductive coil that I had them modify so it can work in IDI or CDI. I don't like the term TCI because maybe I won't use a transistor.
Features for Buzz:
-Operates from 4.7v to 18v, higher the voltage the stronger the spark. But normally set for 5v using a reg for above 6v in.
-Auto Advance with RPM, if you want. Selectable (fixed or auto) or leave out the switch and hard wire a jumper.
-Use either points, inductive, or Hall-Effect trigger (min 3.5v trigger source).
-Max auto advance is controlled by the distance between the Hall-Effect to magnet.
-Use trailing edge with points, inductive, or Hall-Effect to get auto advance.
-Use my coil or yours.
-Adjustable number of sparks and at what frequency, this is so you can use your own coil, each coil is different. The dwell time R3 is the window for the sparks, frequency R7 is the actual number of sparks.
-Self resetting fuses.
-3" (76.26mm) long x 2" (50.49mm) wide.
Buzz
Features for IDI CD4047B:
-Same as the buzz coil board but puts out just one spark. Less parts also.
-Adjustable dwell time R3.
-2.75" (69.79mm) long x 1.75" (44.38mm) wide
IDI CD4047B
Features for CDI Sparky-1:
I originally made this board to work with R/C plane engines and it works very well. With 11.7 volts in it will make sparks up to 37,200 RPM on a single cylinder operation, 21,000 RPM at 5v operation. Average HV is 27,000 or 18,000 at 5v and 32,000 at 11.7v.
-Capacitor Discharge Ignition.
-As low as 400ma current consumption, can go lower but the spark is weak.
-Uses an external trigger and power source. I'll probably change the external regulated power source to internal.
-Needs a 5v external trigger in. Doesn't matter what type but must be at least 5 volts.
-Voltage in is 5-12 volts. I have ran it with 4.5 volts.
-Uses a hic-up circuit so that once the capacitor is charged it turns the charging circuit off and on as needed to keep the capacitor charged and reduce power consumption.
-Charing voltage is 1,000v at 1,000 RPM (single) and 100v at max RPM, max RPM depends on voltage supply.
-Has a separate Kill Switch in line.
-Sparky-2 and 3 in development. Less parts and better performance I hope.
-3" (76.43mm) long x 2" (50.73mm) wide.
Vid Prototype development 1
Vid Prototype development 2
Sparky-1
Features for Universal Trigger Board CD4047B:
I designed the Universal Trigger Board to put out a signal from just about anything. I also designed it work with small engines to automotive use.
-It is a signal conditioner. Signal in square wave signal out of 5-15 volts.
-Will work with points, inductive, or Hall-Effect trigger, has built in weak single boost op-amp.
-Use the Hall setting for points and Hall-Effect.
-Use HEI setting for inductive coil weak signal setups.
-Use with Sparky-1 board.
-Fixed or Auto-Advance
-2.75" (69.85mm) long x 1.75"(44.45mm) wide.
Universal Trigger Board CD4047B
Well these are my simplest boards but, I could have made something as simple as the TIM-6 board but that to me is too simple. But wait, you can use either the Buzz board or the IDI-CD4047B board as simple as the TIM-6 board it's just a matter of choosing what you want and bypassing everything else. For example: if your using a 6v battery you can jumper F1, jumper the input pin of the voltage regulator to the output pin, if you want just fixed timing then leave out the switch and jumper pin 3 or 4 of the switch to pin 2 of the switch, for auto-advance same thing but jumper to pin 5 instead of 2, and so on. These board designs are not locked and I only ordered 5 of each as prototypes for R&D purposes. If someone want's to try one contact me, just pay me for the board and shipping, I'll probably sell 3 of each and any extra parts I have like coils and such. Oh the boards already have a spot for the pull-up resistor for the Hall-Effect so it should be just a matter of putting a 1.5k ohm resistor in and connecting a Hall. Oh the regulator is mostly for the Hall-Effect depending on which one you choose.
How the auto-advance works:
The auto-advance works by using the trailing edge (negative going) of the input signal. It doesn't matter if you are using either points, inductive, or Hall-Effect trigger, as RPM goes up the trailing edge will move closer to the leading edge and so timing will advance from it's initial position. For points you put a 10k ohm resistor in for R1, put a 10k ohm resistor between SIG-IN and S-, then put the points across S+ and SIG-IN. This will give a high when the points close and a negative going low for the auto-advance. You can't control the max advance with points (yet) but you can with a Hall or inductive pickup. When you move the Hall-Effect or inductive pickup away from the magnet the whole pulse width will shrink. So you just reset the initial timing and the auto-advance will now advance less.
Current research:
Currently I'm working on a programmable ignition timing interface. Using an Arduino Nano the interface will allow me to use either points, inductive (HEI), or Hall-Effect trigger working off the crank or distributor signal to program 200 points at 50 RPM increments. The PITI is to replace the mechanical advance on my race car, I don't use a vacuum advance, to much power for that. The interface goes between let's say the dizzy and the ignition box. In my case a Crane High 7 ignition box. The interface is similar to the UT board but, programmable with all the bells and whistles I want and need for drag racing. It's also scalable up or down. Eventually it will do sequential ignition firing from 2 to 20 cylinders or more if I want but, that's getting ahead of myself and I have my racecar to get ready.
Anyway let me know what you people think or if you have any questions just ask, I'll get back ASAIC.
Ray